CGP F & H tier: pages 79-81

Delocalised

electrons

Metal ior

- Used as a lubricant

⁻ Soft, good electrical conductor - Used a

EDEXCEL 9-1 Combined Science | Chemistry Topic 1 – Key Concepts | Required Knowledge | CGP F & H tier: pages 90-94

 Use empirical formula along with M_r to find molecular formula, divide Mr of the compound by the M_r of the empirical formula, then multiply everything in the empirical formula by 2

If 9.6g of Mg reacts with 6.4g of O: 9.6 / 24 (A_r Magnesium) = 0.4 6.4 / 16 (A_r Oxygen) = 0.4

Ratio 0.4 : 0.4 or 1:1 (MgO)

- 2. Divide all moles by the smallest number of moles
- 3. Multiply by an amount to make them all whole numbers
- 4. Write a balanced equation using these numbers

EDEXCEL 9-1 Chemistry | Topic 1 – Key Concepts in Chemistry | Required Knowledge

Atom Structure Diagram 6 protons neutrons electron proton neutron Subatomic Particles Subatomic particle Location Charge Mass 1 +1Proton Nucleus Neutron Nucleus No charge Shells 0 (negligible) -1 Electron Atomic number **Atom Symbols** is the number of protons in the atom's nucleus **Bigger number** is the mass Symbol 32 is used as a short-hand number. and in chemical Ge equations To find Mass number neutrons is the number Germanium of protons and subtract the neutrons in the nucleus 74 smaller number

EDEXCEL 9-1 Chemistry | Topic 1 – Key Concepts in Chemistry | Required Knowledge

EDEXCEL 9-1 Chemistry | Topic 1 – Key Concepts in Chemistry | Required Knowledge

Conservation of mass

- In a closed system the total mass of the reaction before and after doesn't change
- This is because no atoms are destroyed or created, they are just rearranged
- If mass goes up it's care because one of the source reactants has joined from the air

If mass goes down it s
 because a gas has been released

H - Moles

- A mole is an amount of particles equal to Avogadro's constant (6.02 x 10²³)
- One mole of any substance will have a mass in grams equal to the relative particle mass (A_r or M_r) for the substance
- The number of particles of substance in a given mass of that substance can be found by using the 1st equation to find the number of moles and the 2nd equation to find the number of particles

Relative Masses (M _r) - To find M _r add the relative atomic mass (A _r) of the elements making up a compound - H ₂ O H=1 O=16 (1x2)+16=18	 Calculating Concentration The more solute dissolved in in a given volume, the more crowded the particles are = more concentrated Volume muse be in g/dm³ 1 gram dissolved in 1 dm³ = 1 g/dm³ concentration (g dm⁻³) 	Calcu - In is 1. V 2. V ir 3. D 4. N r0 - To
		l m

Empirical Formulae

-

- Tells you the smallest ratio of atoms in a compound
- To find it divide the molecular formula by the highest common multiple

Compound	Molecular Formula	Empirical Formula
Butane	C_4H_{10}	C ₂ H ₅
Octane	C_8H_{18}	C_4H_9

- Experimental Technique
- Use empirical formula along with M_r to find molecular formula, divide Mr of the compound by the M_r of the empirical formula, then multiply everything in the empirical formula by 2
 - If 9.6g of Mg reacts with 6.4g of O: 9.6 / 24 (A_r Magnesium) = 0.4 6.4 / 16 (A_r Oxygen) = 0.4

Ratio 0.4 : 0.4 or 1:1 (MgO)

Calculating Reacting Masses

- In reactions there will be a limiting reactant which is used up, other reactants are in excess
- 1. Write out the balanced equation
- 2. Work out Mr of the reactant and product you're interested in
- 3. Divide both by the Mr of the limiting reactant
- Multiply both by the given mass of the limiting reactant
- To find the mass of limiting reactant needed to make a certain mass of product
- 1. Write out the balanced equation
- 2. Work out the Mr of the reactant and product you're interested in
- 3. Divide both by the Mr of the product
- 4. Multiply both by the given mass of the product

H - Balancing Equations with Reacting Masses

- 1. Divide mass of each substance by Mr ightarrow moles
- 2. Divide all moles by the smallest number of moles
- 3. Multiply by an amount to make them all whole numbers
- 4. Write a balanced equation using these numbers