

Boiling point, melting point and density all increase down the group

filament burning away. Neon

Used in signs as it glows when electricity passes through it.

iodine

no reaction

no reaction

X 2KCI + Br₂ 2KCI + 12 (gains electrons) X $2Br \rightarrow Br_2 + 2e^2$ bromine no reaction 2KBr + I₂

X

Bromide is oxidised

(loses electrons)

G Gain

EDEXCEL 9-1 Chemistry | Topic 6 – Groups in the Periodic Table | Required Knowledge

CGP Chemistry: pages 73 - 76

sodium chloride (s)

hydrogen chloride (g)

hydrochloric acid (aq)

halide

form acids

Halogen + metal \rightarrow metal halide

E.g. chlorine (g) + sodium (s) \rightarrow

Halogen + hydrogen \rightarrow hydrogen

E.g. chlorine (g) + hydrogen (g) \rightarrow

E.g. hydrogen chloride (g) \rightarrow

Hydrogen halides dissolve in water to

Group 1 – Physical properties of alkali metals

- Low melting points and boiling points (decreases down the group)
- Very soft
- Can test for chlorine gas using damp blue litmus paper which turns red, then bleaches white

Group 1 – Reaction of alkali metals with water

- React vigorously with water
- Reactivity increases down the group (because the outer electron is lost more easily)

reactivity		lithium + water	bubbles fiercely on the surface
		sodium + water	melts into a ball and fizzes about the surface
	_	potassium	bursts into

lithium + water → lithium hydroxide + hydrogen $2Li(s) + 2H_2O(I) \rightarrow 2LiOH(aq) + H_2(g)$

- Group 1 Reactivity Reactivity increases down the group
- Alkali metals need to lose one electron to form a 1+ ion
- The bigger the atom the easier it is to lose an electron so the more 2. reactive the atom
- This is due to a greater distance (weaker attraction) between the $\bigcup_{i \to U^{*}+e^{i}}$ positive charge of nucleus and outer shell electrons

Group 0 – Properties of noble gases

- Non-metals
- Inert (very unreactive)
- Non-flammable
- Colourless
- Monatomic (exist as single atoms)
- Boiling point, melting point and density all increase down the group

Group 0 – Uses of noble gases Helium

sodium

Used in balloons and airships to make them float as it is much less dense than air. Argon

Li

Used in light bulbs, as it is unreactive it stops the hot filament burning away. Neon

Used in signs as it glows when electricity passes through it.

m .er	bubbles fiercely on the surface	
im :er	melts into a ball and fizzes about the surface	
sium	bursts into	Acres -

about the surface

Group 7 – Physical properties

Group 7 – Reactivity

- Reactivity decreases down the group
- Halogens need to gain one electron to form a 1- ion
- The bigger the atom the harder it is to gain an electron so the less reactive the atom
- This is due to a greater distance (weaker attraction) between the positive charge of nucleus and outer shell electrons

iodine 2.8.18.1 bromine 2818

ls

G Gain

Loss

Reduction

Group 7 – Displacement reactions

Displacement reaction is where a more reactive element 'pushes out' (displaces) a less reactive element from a compound

H - Redox reactions: halogens gain electrons (reduction) while halide ions in the salt lose electrons (oxidation) Oxidation 0

Shows order of reactivity: Cl₂ + 2KBr → 2KCl + Br₂ Chlorine, bromine, iodine salt (aq) potassium potassium potassium $Cl_a + 2e^{-} \rightarrow 2Cl^{-}$

halogen	cnioride	bromide	lodide	-	
narogen				Chloring is reduced	
chlorine	х	2KCI + Br ₂	2KCI + I ₂	(gains electrons) $2Br \rightarrow Br_2 + 2e^{-1}$	
bromine	no reaction	x	2KBr + I ₂		
iodine	no reaction	no reaction	x	Bromide is oxidised (loses electrons)	

potassiun